
4 Model solution

In this section, we present the model solution. Given our functional form assumptions, our

model has a homogeneity property. We show that model can be restated in terms of a single

state variable, xt ≡ Xt/Kt, without loss of generality. Using this single state variable, which

represents book leverage, greatly simplifies analysis. We characterize a solution to the model

in which the value function for equity holders is equal to P (Kt, Xt) = p(xt)Kt for a function

p(xt). Specifically, we show that the equity holders’ optimal action at each t is determined

by the value of xt and three endogenous cutoffs: (i) a payout boundary x, such that the firm

issues debt to pay a dividend when xt < x; (ii) an equity-issuance boundary x̂, such that

the firm issues equity to reduce leverage when xt > x̂; and (iii) a default boundary x, such

that the firm defaults the first time that a capital shock brings xt above x. In the model

solution, x < x̂ < x. Whenever xt ∈ [x, x̂], the firm relies on debt financing. It issues (pays

down) debt when the free cash flow is less than (greater than) interest expenses. The firm

sets its secured-debt policy st = s(xt) and investment It = i(xt)Kt according to functions of

the state variable xt. Finally, the endogenous credit spreads ηSt = ηS(xt) and η
U
t = ηU(xt)

are functions of xt, taking into account the firm’s optimal policies. Lenders optimally accept

liability-management offers when xt exceeds an endogenous cutoff xα.

Readers less interested in the technical details may skip to Section 5, which uses this

characterization of the optimal firm strategy to present the main results of the paper.

4.1 Payout region

The endogenous boundaries x, x̂, x in our conjectured solution partition the state space [0,∞)

of the state variable xt into four regions. We now characterize each region, starting with the
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payout region: xt < x.

When xt = Xt/Kt is below the endogenous payout boundary x, the firm makes a lump-

sum payment (x − xt)Kt to shareholders. The lump-sum payment is financed with debt,

bringing xt to x. The equity value function p must then satisfy the following value-continuity

condition for x < x:

p(x) = p(x) + x− x , for x < x . (21)

Since (21) holds for x close to x, we obtain the following smooth-pasting condition for x:

p′(x) = −1 , (22)

by taking the limit x → x. At x = x, equity holders are indifferent between reducing debt

by one dollar and distributing this dollar to shareholders. Since the payout boundary x is an

optimal choice, we also have the following super-contact condition (see, e.g., Dumas, 1991):

p′′(x) = 0 . (23)

4.2 Equity issuance region

We next characterize the endogenous equity-issuance region: x̂ ≤ x ≤ x. If leverage xt

enters this region, then the firm issues equity, choosing the net issuance proceeds Mt. Define

mt ≡ Mt/Xt. We conjecture an equity value function p(x) that is continuous before and

after issuance. That implies the following value-matching condition holds for xt ∈ [x̂, x]:

p(xt) = max
m>0

[
p(xt −m)− [h0 + (1 + h1)m]

]
. (24)
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This value-matching condition simply requires that new and old shareholders break even.

In other words, the sum of the equity-issuance costs h0 + h1mt and the dollars injected mt

must equal the value of the equity that shareholders receive, p(xt −mt)− p(xt).

We can define x̃ ≡ xt −m and plug this in above to rewrite the maximization as

max
x̃

p(x̃)− [h0 + (1 + h1)(xt − x̃)] . (25)

We see that the maximization (25) is independent of the value of xt. This implies that for

any xt in the equity-issuance region [x̂, x], the firm chooses the same post-issuance target

leverage x̃. This equity-issuance target leverage is characterized by the argmax of (25) over

the region x̃ ∈ [x, x̂], since the post-issuance leverage will be below the issuance boundary

x̂. Note that the equity-issuance target leverage x̃ is higher than the debt-financed target

leverage x because each dollar of equity issued has a marginal cost.

Finally, we determine the firm’s optimal equity-issuance boundary x̂. Since the target x̃

does not depend on x, (24) implies that for any x ∈ [x̂, x],

p(x) = p(x̃)− [h0 + (1 + h1)(x− x̃)]. (26)

This should hold at the boundary x̂, so

p(x̂) = p(x̃)− [h0 + (1 + h1)(x̂− x̃)]. (27)

Combining these, for any x ∈ [x̂, x],

p(x) = p(x̂)− (1 + h1)(x− x̂). (28)
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Since p(x) is continuous and differentiable at the endogenous equity-issuance boundary

x̂, we can find the equity-issuance boundary x̂ by imposing the following value-matching and

smoothing-pasting conditions:

lim
x↑x̂

p(x) = p(x̃)− [h0 + (1 + h1)(x̂− x̃)] (29)

lim
x↑x̂

p′(x) = −(1 + h1). (30)

4.3 Default Region

Next, we characterize the default region x > x. Intuitively, there is no point in equity

holders voluntarily defaulting while P (K,X) = p(x)K is strictly positive. Likewise, default

is strictly preferred if p(x) is strictly negative. It follows that equity holders voluntarily

default the first time that p(x) ≤ 0. If p(x) would be negative, then equity holders default,

so limited liability implies that:

p(x) = 0 , when x ≥ x. (31)

Substituting p(x) = 0 into the linear equity valuation equation (28), we obtain the

following relation between the default boundary x and the equity-issuance boundary x̂:

x− x̂ =
p(x̂)

1 + h1
. (32)

Note that since x > x̂, a voluntary default cannot occur unless a capital shock arrives:

a Brownian shock would push the firm into the equity-issuance region before reaching the
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default region and the firm would issue equity to lower leverage. In the absence of a restruc-

turing, the firm thus defaults if and only if there is a capital shock and Z is sufficiently low

that

xt =
1

Z
xt− > x. (33)

Rearranging, we can define a default threshold Z∗(x) ≡ x/x in capital-shock space. In

the absence of a restructuring, the firm defaults the first time that Z < Z∗(xt). Finally, if

a restructuring is accepted, the debt level falls from Xt to Xt(1 − stζ(1 − ε)). The above

argument implies the firm then defaults if and only if Z < Z∗(x(1− sζ(1− ε))) ≡ Zres
∗ (x, s).

4.4 Earnings retention and debt-financing region

When x < xt < x̂, equity holders do not want to pay out cash (xt > x) or issue equity

(xt < x̂). Intuitively, in this region, leverage is too high to justify issuing a debt-financed

dividend. However, the costs of leverage deviating from the target level are too small in this

region to justify the equity-issuance costs needed to reach target leverage. In this region,

the firm’s leverage thus evolves stochastically, deviating from the target leverage. The firm

pays down or grows its debt outstanding depending on whether its free cash flow is higher

or lower than its interest expense.

Formally, combining equations (1) and (12) and noting there are no payouts and no

equity issuance in this region, we can apply Ito’s lemma for semimartingales16 to derive the

evolution of xt = Xt/Kt:

16See, for example, Lemma 3 of Appendix H of Duffie (2010).
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dxt = d
Xt

Kt

=
Xt

Kt

(
dXt

Xt

− dKt

Kt

+
(dKt

Kt

)2 )
1dJt=0 +

(Xt

Kt

− Xt−

Kt−

)
dJt

= xt

(
−[θKt − It − (1− τ)Ct]dt

Xt

−
[(
ψ

(
It−
Kt−

)
−δ
)
dt+ σdBt

]
+ σ2dt

)
1dJt=0

+
(Xt−(1− 1R

t ζ(1− ε)st−)

Kt−Z
− Xt−

Kt−

)
dJt

=

(
−θ + i(xt) + (1− τ)ct + xt

[
− ψ(i(xt)) + δ + σ2

] )
dt− σxtdBt

+
(xt−(1− 1R

t ζ(1− ε)st−)

Z
− xt−

)
dJt, (34)

where ct ≡ Ct/Kt = xt[r + stη
S
t + (1− st)η

U
t ].

Given these dynamics, in Appendix A.3, we show that the Hamilton-Jacobi-Bellman

(HJB) equation for the value function P (Kt, Xt) of equity holders implies the following HJB

for p(xt) over the region x ∈ (x, x̂):

γp(x) = max
i,s∈[0,min{1,π

x
}]

(
− θ + i+ (1− τ)c(x, s, Z∗(x))

)
p′(x) +

1

2
σ2x2p′′(x) (35)

+
(
ψ(i)− δ

)(
p(x)− xp′(x)

)
+ ϕ
(
sx
)ν [

(π − ρ− x)+ − p(x)
]

+ λ

[
(1− α1R(x))

∫ 1

Z∗(x)

Zp
( x
Z

)
dF (Z) + α1R(x)

∫ 1

Zres
∗ (x,s)

Zp
(
x
1− sζ(1− ε)

Z

)
dF (Z)− p(x)

]
.

We now explain this equation. Recall that Zres(x, s), Z∗(x) are the necessary shock sizes to

induce a default with or without a restructuring, respectively. In Appendix A, we derive a

function c(x, s, Z∗(x)) such that lenders with rational expectation will charge a coupon Ct =

Ktc(xt, st, Z∗(xt)) to break even. This incorporates the role of secured debt in determining
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the credit spread. The first three terms of (35) capture the sensitivity of equity value

to continuous stochastic fluctuations in leverage, given the endogenous secured-debt ratio,

investment spending, and credit spreads. The fourth term captures the impact of a secured-

lender takeover.

The final line of (35) captures the impact of capital shocks. We derive a cutoff xα and a

function 1R(x) = 1(x > xα) such that secured lenders optimally accept a restructuring offer

if and only if xt > xα (i.e., 1R(xt) = 1). The probability of a restructuring after a shock is

thus α1R(x). The first term on this line captures how, in the absence of a restructuring, a

capital shock lowers Kt and leaves Xt fixed. The final term captures how a capital shock

followed by a restructuring lowers both Kt and Xt.

In this debt-financing region, equity holders choose investment spending i = i(xt) and

secured debt st = s(xt) to maximize the right side of the HJB. Taking a derivative, we can

show analytically that the optimal investment level is

i∗(x) =
1

ξ

(
1− p′(x)

xp′(x)− p(x)

)
. (36)

The optimal investment level thus trades off the cost ξ associated with increasing the

capital stock with the increase in value from lowering leverage with another unit of capital.

4.5 Numerical solution

The solution method for our jump-diffusion model is different from pure-diffusion models,

which only require local information around x. Moreover, the circularity between creditor

choices (credit spreads and restructuring acceptance) and equity holder choices introduces

complication. Our numerical algorithm accounts for this with an iterative approach. We
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guess a function pi(x) with associated boundaries x, x̂, x and calculate credit spreads and

restructuring acceptance decisions. We then use the HJB (35) and other conditions described

above to update to a new guess pi+1(x), assuming equity holders’ strategies, creditor behavior

and post-jump-shock values derived from pi(x). We repeat until this process converges. We

provide details on our numerical method in Appendix A.4.

5 Results

This section presents our main results. In Section 5.1, we provide intuition for how the firm

optimizes the path of its leverage xt. In Section 5.2, we characterize the optimal secured-debt

ratio s∗(xt). In Section 5.3, we conduct comparative statics with respect to the parameter

α to show our main result: more frequent liability management leads to higher secured-

debt-credit spreads and lower secured-debt use, but also prevents liquidations and increases

both investment and ex-ante firm value. Finally, Section 5.4 shows that our model matches

empirical evidence.

5.1 The optimal leverage ratio

First, we build intuition for our model by studying the leverage dynamics implied by our

model solution. We solve our model numerically assuming the parameters given in Table 1.

Recall that whenever xt < x, the firm immediately issues debt and pays a dividend to bring

leverage up to x. Likewise, whenever xt > x̂, the firm immediately issues equity to bring

leverage down to x̃. The firm’s leverage thus remains in the range [x, x̂], almost surely, prior

to default (which occurs if a jump shock brings x from [x, x̂] to a value above x).

Figure 1 displays the model solution in the range xt ∈ [x, x]. As expected, panel A shows
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that the ex-post enterprise value declines in x in this range. By definition, x is the point at

which equity holders are indifferent between keeping leverage fixed or issuing another dollar

of debt to pay a dividend. For x > x, it follows that p′(x) < −1 and thus the ex-post

enterprise value v(x) = p(x) + x declines in x. In this sense, the firm’s leverage is typically

higher than its debt-financed target leverage x. Once leverage rises to x̂, the firm incurs the

equity-issuance cost to issue equity and lower leverage. Since equity issuance has a marginal

cost per dollar of equity issued, the firm’s equity-financed target leverage x̃ is higher than

its debt-financed target x. For x > x̂, the declining firm value simply reflects the higher

equity-issuance costs needed to bring down leverage.

Interestingly, panel B shows that the enterprise value is concave in x for low xt and

convex in x for high values of xt. Because of this, panel D shows that investment first falls

as leverage rises (debt overhang) for low leverage levels, then increases with leverage (risk-

shifting). Panel C shows the obvious result that market leverage x/v(x) increases as book

leverage rises.

What motivates the firm’s choice of the endogenous thresholds x, x̂ determining leverage

dynamics? Figure 2 shows that the answer is a standard tradeoff theory. As we increase

the tax rate τ , the simulated average leverage rises. As we increase the value of the firm in

default (e.g., shrink the deadweight losses), the simulated average leverage also rises.

5.2 The optimal secured ratio

Next, we illustrate the choice of secured debt in our model. The benefit of secured debt is that

it allows firms to lower their cost of credit. This lower cost of credit arises because secured

lenders are senior to existing priority unsecured claims, such as wages. Issuing secured debt

essentially allows the firm to transfer value from priority claim holders to secured claim
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holders. The downside of secured debt is that secured creditors push for early default to

ensure full recovery (Section 3.4.3). This can lead to an early default that lowers firm value.

We provide intuition for this tradeoff driving the secured-debt choice using comparative

statics. In Figure 3, we vary the parameter ρ that captures priority unsecured claims. For

each fixed value of ρ, we solve the model. The right panel of Figure 3 shows that as ρ

increases, the firm optimally chooses a higher secured-debt ratio: the simulated average

secured-debt ratio rises. This is explained by the same intuition described above. As ρ

increases, the recovery value available to unsecured claims declines. Secured debt then

becomes more valuable because it lowers the cost of credit by skipping ahead of priority

claims. Next, we vary the parameter ϕ driving the probability of a forced default. As ϕ

increases, secured lenders are more likely to push for early default to ensure full recovery.

Default imposes a deadweight loss because the recovery value is lower than the firm value.

Secured lenders do not care about this deadweight loss since they still get full recovery in a

forced default. However, equity holders internalize this deadweight loss because it increases

the cost of unsecured credit and lowers the expected value of future dividends. Because of

this, the left panel of Figure 3 shows that the simulated average secured-debt ratio falls as

ϕ increases.

Figure 1 provides further intuition on secured-debt use. Panel F shows that credit spreads

rise as xt rises. This is intuitive. For higher levels of xt, default becomes more likely. This

occurs because the set of default-inducing Z shocks increases. Specifically, default occurs

when a sufficiently low realization of Z causes Xt/Kt = Xt/(ZKt−) to rise above x. As

xt− = Xt−/Kt− rises, this becomes more likely. Panel F also shows the obvious result that

unsecured credit spreads are higher than secured credit spreads. The gap between secured

and unsecured spreads rises as xt increases due to the higher likelihood of default. This
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motivates the firm to use more secured debt as xt rises (panel E).

Finally, to show how the firm’s overall financial strategy changes with secured-debt use,

we impose an exogenous upper limit s on secured debt. We solve our model as before with an

additional constraint that st < s. Increasing s demonstrates how secured-debt use impacts

a firm. In Figure 4, we increase s and solve the model at each value. Figure 4 shows that

ex-ante firm value v(0) increases as the firm is able to use more secured debt. The firm stops

benefiting once s rises above the optimal secured-debt ratio, so the constraint doesn’t bind.

Figure 4 also shows that the increased use of secured debt leads to a higher probability of

default due to forced takeovers by secured lenders. Figure 5 shows that the firm uses more

leverage as its ability to use secured debt rises. As a result of the higher leverage, both

secured and unsecured credit spreads rise. However, Figure 5 shows that at a certain point

the weighted credit spread η nonetheless falls as s rises. This is the benefit of secured debt

— it allows the firm to extract value from workers to lower the cost of credit for a given level

of leverage.

5.3 The rise of liability management

In our analysis thus far, we have assumed no liability-management transactions occur (α = 0

in Table 1). We now consider the impact of the recent trend toward more frequent liability-

management transactions. We increase the parameter α to 0.8 and solve our model. The

left panel of Figure 6 shows that there exists a cutoff xα such that secured lenders optimally

accept a liability-management transaction if and only if xt > xα. The right panel of Figure

6 shows that as the haircut falls (ε rises), secured lenders are more likely to accept an offer

(xα falls).

Next, we study what happens as liability-management transactions become more com-
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mon. We increase α along a grid of values, solving the model and solving for xα. Panel

B of Figure 7 shows that as restructurings become more common, secured credit spreads

increase. Secured lenders anticipate having to either get subordinated or pay a haircut in a

future restructuring. As a result, panel C of Figure 7 shows that secured-debt use falls as

α rises. This in turn leads to fewer defaults as secured-debt takeovers become less common

(panel F).

Surprisingly, Figure 7 shows that ex-ante firm value nonetheless increases as α increases

(panel A). The intuition is the following. In a restructuring, value is transferred from secured

lenders to equity holders. Secured lenders price this in ex-ante, so it has no impact on firm

value. Additionally, restructurings lower debt when they are not followed by default. Ex-

ante, lenders also charge a higher spread for this fact. However, this is more than a transfer.

Lowering debt in bad states of the world (high leverage) increases enterprise value. Equity

holders are not willing to pay for a debt reduction in these states due to a debt-overhang

problem: part of the benefit goes to lenders. By allowing equity holders to lower debt for

free ex-post, liability-management transactions solve this debt-overhang problem. Thus,

while lenders charge more ex-ante, there is nonetheless value created for equity holders ex-

ante by the ex-post flexibility. This is why ex-ante value increases as liability-management

transactions become more common.

5.4 Matching empirical evidence

Finally, we show that our model produces realistic firm debt policies. This serves as a

validation of the model’s prediction regarding the trend toward creditor-on-creditor violence.

Using the parameters from Table 1, we solve our model. Table 2 shows the optimal firm

leverage is 37%. The optimal secured debt ratio is 33.9%. Benmelech, Kumar, and Rajan
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(Forthcoming) show in their Table 2 that the average secured debt share is 33% and the

average leverage ratio is 37%. In this sense, our model perfectly replicates observed leverage

and secured-debt use.

Benmelech, Kumar, and Rajan (2022) compare credit spreads on secured and unsecured

debt issued by the same firm at the same time. They show that the senior secured credit

spread is 222 basis points lower than the junior unsecured credit spread (Table 2 column 4).

Our Table 2 replicates the same exercise in our model, showing that secured credit spreads

are 284 basis points lower than unsecured credit spreads.

Finally, Benmelech, Kumar, and Rajan (Forthcoming) show that firms issue more debt

in crises and when they are in distress. Panel E of Figure 1 shows that firms in our model

use more secured debt as negative shocks drive their leverage above their target. In this

sense, our model replicates this fact.

6 Conclusion

We build a continuous-time capital structure model in which a firm chooses its investment,

leverage, secured-debt ratio, payout policy, equity issuance, and default timing. We show

that the choice of leverage is determined by a standard tradeoff between the tax benefits

of debt and the costs of default. We show that the secured-debt share is chosen by a novel

tradeoff between a lower cost of credit, due to the ability to extract value from priority unse-

cured claims like wages, and a higher probability of default, due to secured-lender incentives

to push for early asset sales.

Within this model, we introduce a recent phenomenon: secured lenders have used legal

loopholes to extract value from other secured lenders when firms become distressed. We show
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that this recent trend increases the cost of secured debt and endogenously lowers secured-

debt use. However, the lower use of secured debt also leads to fewer defaults, since there is

less incentive to push for early asset sales. Moreover, the libaility-management transactions

create value ex-ante by allowing the firm to introduce state-contingent debt reduction.
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Table 1: Parameter values

This table shows our baseline parameter values.

r Risk-free rate 0.05
γ Shareholder discount rate 0.1
σ diffusion volatility 0.4
λ Arrival rate of cashflow shocks 1.5
β Cashflow-shock severity 4.3
θ Profitability of capital 0.5
π Recovery value of capital in default 0.9
ρ Priority claims / capital 0.8
ν Convexity of secured default risk 5.5
ϕ Scale of secured default risk 1
ξ Cost of investment 1.1
δ Depreciation 0
τ Corporate tax rate 0.21
α Probability of liability management 0
ζ Size of secured coalition 0.6
ε Exchange rate in liability management 0.996
h0 Equity issue fixed cost 0.01
h1 equity issue proportional cost 0.01
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Table 2: Model solution

We assume the parameter values listed in Table 1. This tables show the average results for 100000 simulations.

We set time interval to be 0.01 and set terminal time to be T = min{100, T∗}, where T∗ is the time of default.

We set x0 = x̃.

Moment Model optimum

Leverage 0.370
Secured debt share 0.339
Secured debt credit spread 0.0013
Unsecured debt credit spread 0.0297
Credit spread difference 0.0284
Firm value for s = 1/2 1.908
Firm value for s = 0 1.850
equity value without debt 1.510
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Figure 1: The parameter values are given in Table 1.
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