
Figure 2: All parameter values are given in Table 1.

Figure 3: All parameter values are given in Table 1.
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Figure 4: All parameter values are given in Table 1.
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Figure 5: All parameter values are given in Table 1.
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Figure 6: The parameter values are given in Table 1 but α = 0.8.
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Figure 7: All parameter values are given in Table 1. The average forced de-

fault probability equals

∫ x̂
x

1−e−ϕ(s∗(x)x)ν dx

x̂−x and average voluntary default probability equals∫ x̂
x

1−e−λ((1−α1R(x))F (Z∗(x))+α1R(x)F (Z∗(x)(1−s∗(x)ζ(1−ε))))dx

x̂−x 48
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Figure 8: All parameter values are given in Table 1.
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A Mathematical details

In this appendix, we derive expressions for the credit spreads ηSt , η
U
t . We also derive the

Hamilton Jacobi Bellman (HJB) equation for equity holders.

A.1 Secured credit spread

Recall that

stXt(1 + rdt) = P
(
Deft,t+dt = 0

)
stXt(1 + (r + ηSt )dt) + E

[
RSec

t+dtDeft,t+dt = 1

]
. (A.1)

Since secured debt is fully collateralized by equation (9), secured lenders get full recovery

if they force a default. In the homogeneous solution, the only state variable is the ratio:

xt =
Xt

Kt

. (A.2)

Consider the feedback strategy st = s∗(xt), where function s∗(·) is to be determined. Denote

p(x) =
P (K,X)

K
, v(x) =

V (K,X)

K
= p(x) + x. (A.3)

Voluntary default only occurs after a capital shock in which Z < Z∗(xt), where

Z∗(x) = max{Z ∈ [0, 1] : p(x/Z) = 0}. (A.4)
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A.1.1 Scenario 1: Forced default

If secured lenders force a default, they get full recovery because we assume that sx < π or

SX < πK. This occurs with probability ϕ(sx)νdt.

A.1.2 Scenario 2: Endogenous default, no restructuring

If a shock occurs and there is no restructuring, equity chooses to default if Z < Z∗(xt−).

If there is a default, secured lenders recover Kt−max(s∗(xt−)xt− , Zπ). This occurs with

probability λ(1− α)F
(
Z∗(xt−)

)
dt.

A.1.3 Scenario 3: Restructuring

We assume the following timing for a restructuring:

1. A capital shock occurs

2. Before anyone sees how bad it is (Z), the firm offers an exogenous liability management

transaction: with probability α, randomly select a fraction ζ ∈ [1/2, 1] of secured

lenders, offer an exchange rate ϵ

3. Lenders decide whether to accept, doing so reduces total debt load by (1− ϵ)ζst−Xt−

4. Firm decides whether to default

5. Payoffs realize

If a shock occurs, there is a restructuring with probability α. This erases a fraction

ζ(1 − ϵ) of secured debt. It reduces total debt by (1 − ϵ)ζst−Xt−. Note this assumes the

restructuring is accepted - in the region where restructurings are rejected, we can simply set

α = 0 in the final formula.
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After a shock and restructuring, the firm defaults if Z < Z∗(xt−
[
1 − s∗(xt−)ζ(1 − ϵ)

]
),

which reflects the new amount of debt post restructuring. If there is no default, total value

to secured lenders is Kt−
[
s∗(xt−)xt−(1− ζ(1− ϵ))

]
.17 This occurs with probability

λα
[
1− F

(
Z∗(xt−

[
1− s∗(xt−)ζ(1− ϵ)

]
)
)]
dt.

We now consider the scenario in which the firm defaults after restructuring. A measure

ζs∗(xt−)Xt− of secured lenders have face value ϵ while a measure (1−ζ)s∗(xt−)Xt− have face

value 1. It follows that the total recovery to secured lenders is

min
(
ZπKt−, s∗(xt−)Xt−

[
ϵζ + (1− ζ)

])
. (A.5)

This occurs with probability

λαF
(
Z∗(xt−

[
1− s∗(xt−)ζ(1− ϵ)

]
)
)
dt

A.1.4 Combining default scenarios

For simplicity, we drop time subscripts, with all variables assumed to be evaluated at the

left limit t−. Define

ZS(x) = min

(
Z∗(x),

sx

π

)
. (A.6)

If there is no restructuring, secured lenders get full recovery in a shock with Z > ZS(x).

17This is also what lenders expect to receive in this scenario before learning whether they are in the
coalition. A continuum of lenders with measure s∗(xt−)Xt− each have face value 1. They know with
probability 1− ζ they will keep face value 1. With probability ζ they will get face value ϵ. Conditional on no
default and a restructuring, the expected face value is 1− ζ + ϵζ. Multiplying by the mass of the continuum
gives the total value above.
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That’s because either the firm doesn’t default (Z > Z∗(x)) or there is enough value for full

repayment ZπK > sX.

Define

xres(x, s) ≡ x(1− sζ(1− ε)) (A.7)

and

ZV (x, s) = min

(
Z∗(x

res(x, s)),
sx(1− ζ(1− ε))

π

)
. (A.8)

If there is a restructuring, the new face value of debt is xres(x, s)K and secured lenders

get full recovery on their new face value sX(1 − ζ(1 − ε)) when Z > ZV (x, s) by the same

logic as above.

Piecing together the above scenarios, the breakeven condition for secured lenders, which

says that the risk free return must equal the expected return for creditors to break even in

expectation, is:

sX(1 + rdt) = sX(1 + (r + ηS)dt)
(
1− [λ(1− α)F (Z∗(x)) + λα]dt

)︸ ︷︷ ︸
Full recovery unless (shock+no restructure+default) or (shock+restructure)

(A.9)

+ λα
[
1− F

(
Z∗(x

res(x, s))
)]
dt

[
sX(1 + (r + ηS)dt)(1− ζ(1− ε))

]
︸ ︷︷ ︸

Full recovery net haircut if (shock+restructure+no default)

(A.10)

+ λαdt

[ (
F (Z∗(x

res(x, s)))− F (ZV (x, s))
)
(1− ζ(1− ϵ))sX + πKF (ZV (x, s))E[Z|Z < ZV (x, s)]

]
︸ ︷︷ ︸

Default recovery if (shock+restructure+default)

(A.11)

+ λ(1− α)dt

[ (
F (Z∗(x))− F (ZS(x))

)
sX + πKF (ZS(x))E[Z|Z < ZS(x)]

]
︸ ︷︷ ︸

Default recovery if (shock + no restructure + default)

. (A.12)

A-4

Electronic copy available at: https://ssrn.com/abstract=4821620



Note scenario 1 (forced default) does not appear because secured lenders get full recovery.

Dividing by sXdt and taking dt to zero,

0 = ηS − [λ(1− α)F (Z∗(x)) + λα] (A.13)

+ λα
[
1− F

(
Z∗(x

res(x, s))
)][

(1− ζ(1− ε))

]
(A.14)

+ λα

[ (
F (Z∗(x

res(x, s)))− F (ZV (x, s))
)
(1− ζ(1− ε)) +

π

sx
F (ZV (x, s))E[Z|Z < ZV (x, s)]

]
(A.15)

+ λ(1− α)

[ (
F (Z∗(x))− F (ZS(x))

)
+
π

sx
F (ZS(x))E[Z|Z < ZS(x)]

]
. (A.16)

This provides a closed form for ηS. Specifically, recall that F (Z) = Zβ, implying that

E[Z] = b̂ ≡ β
β+1

and
∫ b

a
ZdF (Z) = β

β+1
(bβ+1 − aβ+1). We thus have:

ηSt = ηS(st, xt, Z∗(xt)), (A.17)

where ηS(·, ·, ·) is defined as follows:
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ηS = λ(1− α)(Z∗(x))
β + λα

− λα

[ (
1− (ZV (x, s))β

)
(1− ζ(1− ε)) +

πb̂

sx
(ZV (x, s))β+1

]
− λ(1− α)

[ (
(Z∗(x))

β − (ZS(x))β
)
+
πb̂

sx
(ZS(x))β+1

]
= λ(1− α)

[
(ZS(x))β − πb̂

sx
(ZS(x))β+1

]
− λα

[ (
1− (ZV (x, s))β

)
(1− ζ(1− ε)) +

πb̂

sx
(ZV (x, s))β+1 − 1

]
. (A.18)

A.1.5 Condition for secured lenders accepting offer

Finally, we consider the condition for secured lenders accepting the transaction. Recall that

this is only relevant after a shock occurs. Given a shock has occurred, if the coalition of

secured lenders reject, their expected recovery per dollar of face value is

(1− F (ZS(x))) + F (ZS(x))
π

sx
E[Z|Z < ZS(x)]. (A.19)

The first term captures full recovery if secured lenders are unimpaired. The second term

captures all secured lenders sharing the full recovery value.

If the coalition of secured lenders accept, the expected recovery per dollar of face value

is

(1− F (Zζ(x, s)))ϵ+ F (Zζ(x, s))
π

sxζ
E[Z|Z < Zζ(x, s)], (A.20)

where accepting secured lenders are impaired on their new face value if Z is less than
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Zζ(x, s) ≡ min(Z∗(x
res(x, s)) ,

ζϵsx

π
). (A.21)

The first term above captures getting ϵ dollars per original dollar of face value if the new

super secured debt is unimpaired. The second term above captures splitting the full recovery

value with the original coalition, which originally had sxζ.

Putting this together, secured lenders accept a restructuring offer at (x, s) if and only if

(1− (Zζ(x, s))
β)ε+ (Zζ(x, s))

β+1 πb̂

sxζ
> (1− (ZS(x))β) + (ZS(x))β+1πb̂

sx
. (A.22)

We use this to verify that (11) holds.

A.2 Unsecured credit spread

Recall that

Xt(1− st)(1 + rdt) = P
(
Deft,t+dt = 0

)
Xt(1− st)(1 + (r + ηUt )dt)

+ E
[
RUnsec

t+dt Deft,t+dt = 1

]
. (A.23)

To start, we consider the case where no subordination occurs. Let

ZU,l,N(x) = min
(
Z∗(x),

s∗(x)x

π − ρ

)
. (A.24)

Then Z < ZU,l,N(xt) implies firm defaults in the period [t, t+ dt] and Z(π− ρ)Kt < s(xt)Xt
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so there is nothing left for unsecured creditors in default (assuming no subordination).

Let

ZU,h,N(x) = min(Z∗(x),
x

π − ρ
). (A.25)

Then Z < ZU,h,N(xt) implies Z(π − ρ)Kt < Xt so unsecured debt is impaired, while Z >

ZU,h,N(xt) implies unsecured debt is unimpaired. It’s clear that ZU,h,N ≥ ZU,l,N . Then, if

there is no subordination, unsecured recovery is 0 for Z < ZU,l,N(xt), it is (π−ρ)ZKt− stXt

for Z ∈ (ZU,l,N(xt), Z
U,h,N(xt)), and it is (1− st)Xt for Z > ZU,h,N(xt).

Next, suppose subordination occurs. The situation is the same, except we must account

for the reduced amount of secured debt and the different default threshold:

ZU,l,V (x) = min(Z∗(x
res(x, s∗(x))),

(1− ζ + εζ)s∗(x)x

π − ρ
) (A.26)

Then Z < ZU,l,V (xt) implies equity defaults and unsecured get nothing.

Let

ZU,h,V (x) = min

(
Z∗(x

res(x, s∗(x))),

x

[
(1− s∗(x)) + s∗(x)(1− ζ + εζ)

]
π − ρ

)
. (A.27)

Unsecured lenders get full recovery if Z > ZU,h,V by the same logic described above. Let

fsub = (1− ζ + εζ).

In the following, to ease the notation, we denote Z∗(xt), Z∗(x
res(xt, s∗(xt))), Z

U,h,N(xt),

ZU,l,N(xt), Z
U,h,V (xt) and ZU,l,V (xt) as Z∗, Z

res
∗ , ZU,h,N , ZU,l,N , ZU,h,V and ZU,l,V , respec-

tively. We similarly drop time subscripts and evaluate at left limits t−. Then the unsecured

breakeven condition is
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(1− s)X(1 + rdt) = (1− s)X(1 + (r + ηU)dt)

×

(
1−
[
λ

(
(1− α)F (Z∗) + αF (Zres

∗ )

)
+ϕ(

sX

K
)ν
]
dt

)

+ ϕ(
sX

K
)νdtmin

[
(1− s)X, (π − ρ)K − sX

]+
+ λ(1− α)dt

((
F (Z∗)− F (ZU,h,N)

)
(1− s)X

+ E
[ (

(π − ρ)ZK − sX
)
1

(
Z ∈ (ZU,l,N , ZU,h,N)

)] )
+ λαdt

((
F (Zres

∗ )− F (ZU,h,V )
)
(1− s)X

+ E
[ (

(π − ρ)ZK − fsubsX
)
1

(
Z ∈ (ZU,l,V , ZU,h,V )

)] )
. (A.28)

Divide by (1− s)Xdt and let dt go to zero:

0 = ηU−
[
λ
(
(1− α)F (Z∗) + αF (Zres

∗ )
)
+ϕ(sx)ν

]
+ ϕ(sx)ν min

[
1,
π − ρ− sx

(1− s)x

]+
+ λ(1− α)

((
F (Z∗)− F (ZU,h,N)

)
+E
[
(π − ρ)Z − sx

(1− s)x
1

(
Z ∈ (ZU,l,N , ZU,h,N)

)] )
+ λα

((
F (Zres

∗ )− F (ZU,h,V )
)
+E
[
(π − ρ)Z − fsubsx

(1− s)x
1

(
Z ∈ (ZU,l,V , ZU,h,V )

)] )
.

Rearranging, this gives a closed form:

ηUt = ηU(st, xt, Z∗(xt)), (A.29)
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where ηU(·, ·, ·, ·) is defined as follow

ηU(s, x, Z∗) = λ(1− α)(Z∗)
β + ϕ(sx)ν − ϕ(sx)ν min

[
1,
π − ρ− sx

(1− s)x

]+
− λ(1− α)

(
(Z∗)

β − (ZU,h,N(x))β − s

(1− s)

[
(ZU,h,N(x))β − (ZU,l,N(x))β)

]
+
b̂(π − ρ)

(1− s)x

(
(ZU,h,N(x))β+1 − (ZU,l,N(x))β+1

) )
+ λα

(
(ZU,h,V (x))β +

fsubs

(1− s)

[
(ZU,h,V (x))β − (ZU,l,V (x))β)

]
− b̂(π − ρ)

(1− s)x

[
(ZU,h,V (x))β+1 − (ZU,l,V (x))β+1

] )
. (A.30)

Denote η(s, x, Z∗) = sηS(s, x, Z∗) + (1− s)ηU(s, x, Z∗).

A.3 HJB equation with costly equity issuance

On the internal financing region, we have (1) and

dXt =
(
− θKt + It + (1− τ)Ct

)
dt− α(Xt/Kt)ζ(1− ε)st−Xt−dJt, (A.31)

where α(Xt/Kt) = α1R(xt) if the secured acceptance condition (A.22) is met and zero

otherwise. Using the homogeneity property, equation (7) implies Ct = c(xt, st, Z∗(xt))Kt

where:

c(x∗, s∗, Z∗) ≡ x∗

(
r + ηS(x∗, s∗, Z∗)s∗ + ηU(x∗, s∗, Z∗)(1− s∗)

)
, (A.32)

Z∗(·) is given by (A.4), ηS(·, ·, ·) is given by (A.18), and ηU(·, ·, ·) is given by (A.30).

Then we can derive the following HJB equation for the equity value function P (K,X)
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on the internal financing region

γP (K,X) = max
I,s∈[0,min{1,π

x
}]

(
− θK + I + (1− τ)c

(X
K
, s, Z∗

(X
K

))
K
)
PX(K,X)

+K
(
ψ

(
I

K

)
−δ
)
PK(K,X) +

1

2
σ2K2PKK(K,X)

+λ

[
− P (K,X) + (1− α(X/K))

∫ 1

0

P (ZK,X)dF (Z)

+α(X/K)

∫ 1

0

P (ZK,X − sXζ(1− ε))dF (Z)

]
+ϕ
(sX
K

)ν[
(πK − ρK −X)+ − P (K,X)

]
. (A.33)

Using x = X/K and p(x) = P (K,X)/K, we have PX(K,X) = p′(x), PK(K,X) =

p(x) − xp′(x), KPKK(K,X) = x2p′′(x). Substituting them with i = I/K into (A.33), we

derive the HJB equation for p(x):18

γp(x) = max
i,s∈[0,min{1,π

x
}]

(
− θ + i+ (1− τ)c(x, s, Z∗(x))

)
p′(x) +

1

2
σ2x2p′′(x)

+
(
ψ(i)− δ

)(
p(x)− xp′(x)

)
+λ

[
(1− α1R(x))

∫ 1

0

Zp
( x
Z

)
dF (Z)

+α1R(x)

∫ 1

0

Zp
(
x
1− sζ(1− ε)

Z

)
dF (Z)− p(x)

]
+ϕ
(
sx
)ν [

(π − ρ− x)+ − p(x)
]
. (A.34)

Using (A.4), we have p(x/Z) = 0 for Z < Z∗(x) and p(x(1 − sζ(1 − ε))/Z) for Z <

Zres
∗ (x, s). Substituting them into (A.34), we can derive (35).

18Note that P (ZK,X − sXζ(1− ϵ))/ZK = p
(
(X/K)× (1− sζ(1− ϵ))/Z

)
.
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A.4 Algorithm for numerical solution

A.4.1 The Case Without Restructuring

In this section, we consider the case α = 0. Note that (A.32) is independent with Zres
∗ when

α = 0. Then, let function c(x∗, s∗, Z∗) be given by (A.32) with α = 0.

1. According to (35), we define the operators

Api,s(x)

=
1

2
σ2x2p′′(x) +

(
− θ + i+ (1− τ)c(x, s, Z∗(x))− x

(
ψ(i)− δ

))
p′(x)

−
(
λ+ γ + δ − ψ(i)

)
p(x)

+ ϕ
(
sx
)ν [

(π − ρ− x)+ − p(x)
]
= 0, (A.35)

and

Bp(x) :=
∫ 1

Z∗(x)

Zp(x/Z)dF (Z), (A.36)

where Z∗(x) is defined by (A.4). Moreover, we set

Ap(x) = max
i∈R,s∈[0,min{1,π

x
}]
Ai,sp(x), (A.37)

where the optimal s is denoted as s∗(x; p) and optimal i is denoted as i∗(x; p).

Then we derive from (35) that Ap(x) + λBp(x) = 0 in the debt financing region

x ∈ (x, x̂).
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2. According to (21)-(35), we propose following variational inequality:

max{Ap(x) + λBp(x), 1 + p′(x)} = 0, x ∈ (xmin, x̂) (A.38)

with boundary conditions:

p′(xmin) = −1, p′(x̂) = −(1 + h1), (A.39)

where xmin > 0 is any sufficiently small number, and equity-issuance boundary x̂ is

determined by (24), which implies

Mp(x̂) = p(x̂).

Here, Mp(x) denotes the equity value after equity financing:

Mp(x) := max
∆x>0

[
p(x−∆x)− h0 − (1 + h1)∆x

]
. (A.40)

3. Numerically, we can find x̂ by following steps:

(i) Give a initial guess of the equity-issuance boundary, denoted by x̂0.

(ii) Solve equation (A.38) and obtain p(x).

(iii) Update x̂ using Mp(x) as follow:

x̂ = x̂0 − ϵ1Mp(x̂0)>p(x̂0) + ϵ1Mp(x̂0)<p(x̂0), (A.41)

where ϵ > 0 is a sufficiently small number. The intuition is given as follow:
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Firm has incentive to issue equity at x only when x is large enough such that

Mp(x) ≥ p(x̂0). Then we should have x̂ = inf{x : Mp(x) ≥ p(x)}. Thus,

Mp(x̂0) > px̂0 means x̂ < x̂0 and Mp(x̂0) < p(x̂0) means x̂ > x̂0.

(iv) We stop updating x̂ if |Mp(x̂)− p(x̂)| is sufficiently small.

4. The endogenous payout boundary x = sup{x ∈ [xmin, x̂] : p(x) = 1}.

5. In the region x ≥ x̂, we derive from (28) and (31) that

p(x) = max{0, p(x̂)− (1 + h1)(x− x̂)}, x ≥ x̂. (A.42)

Next, we only need to solve equation (A.38) for a given x̂ > 0. Here, we consider penalty

method and Newton iteration.

1. Give a initial guess of equity value, denoted as p0(x). One simple choice is p0(x) =

p0(0)− x. Thus, we only need to set a scale value p0(0). As for p0(0), one can set it as

the equity value in the setting without debt.

2. We can solve (A.38) numerically by considering a sequence of functions {pk(x)}, k =

1, 2, . . . , as follows:

(i) In the region x ∈ (xmin, x̂), pk+1(x), k = 0, 1, . . . , solves the following equation

Aik(x),sk(x)pk+1(x) + λBpk(x) + Υ
(
1 + p′k+1(x)

)
11+p′k(x)≥0 = 0, x ∈ (xmin, x̂),

(A.43)

p′k+1(xmin) = −1, p′k+1(x̂) = −(1 + h1), (A.44)
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where Υ > 0 is the penalty parameter and for each k, ik(x) = i∗(x; pk) and

sk(x) = s∗(x; pk) are the maximizer of (A.37) with p replace by pk, the default

boundary xk := inf{x > 0 : pk(x) = 0} so Z∗(x) = x
xk
. Moreover, Bpk(x) in

(A.43) is given by

Bpk(x) =
∫ 1

x
xk

Zpk(x/Z)dF (Z). (A.45)

(ii) We solve ODE (A.43) using the finite difference method. We choose grid of x in the

region [xmin, x̂]: xn = xmin + (n− 1)∆x, n = 1, 2, . . . , N + 1, where ∆x = x̂−xmin

N
.

Using the upwind scheme, one can discretize (A.43) as follow:

pk+1(xn)
[
|gk(xn)|+ σ2 (xn)

2

(∆x)2
+ γ − µ+ λ+ ρ(xnsk(xn))

ν
]

=pk+1(xn+1)
[
max{gk(xn), 0}+ σ2 (xn)

2

2(∆x)2

]
+pk+1(xn−1)

[
max{−gk(xn), 0}+ σ2 (xn)

2

2(∆x)2

]
+ρ(xnsk(xn))

ν(L−R− xn)
+ + λBpk(xn) + Υ11+p′k(xn)≥0, (A.46)

where

gk(x) = −θ + ik(x) + (1− τ)c(x, sk(x), Z∗(x))− x
(
ψ(ik(x))− δ

)
+Υ11+p′k(x)≥0.

(A.47)

(iii) In the region x ≥ x̂, we derive from (28) and (31) that

pk+1(x) = max{0, pk+1(x̂)− (1 + h1)(x− x̂)}, x ≥ x̂, (A.48)
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where pk+1(x̂) is obtained in step (i) by solving (A.43)-(A.44).

3. Repeat step 2 until ∥pk − pk+1∥ is sufficiently small.

A.4.2 The Case with Possible Restructuring

For the case α > 0, we only need to change the definition of c and Bp(x). Let function

c(x∗, s∗, Z∗)be given by (A.32) and define Bp(x) by

Bp(x) := (1− α1R(x))

∫ 1

0

Zp(x/Z)dF (Z) + α1R(x)

∫ 1

0

Zp(x(1− sζ(1− ε))/Z)dF (Z).

(A.49)

B Illustrative model

This section presents a simple model to illustrate the intuition behind our results. We show

how the potential for a liability-management transaction impacts a firm with one class of

debt. We then explain how this impact will depend on a firm’s use of secured debt, motivating

our main model.

The illustrative model has three dates t = 0, 1, 2. At t = 0, a firm chooses how much

debt to issue. At t = 1, the firm and its lender observe a signal about the future operations.

There is then the potential for a liability-management transaction like Serta’s transaction.

We refer to this as a restructuring. At t = 2, the firm and lender observe the firm’s value.

The firm defaults or pays back debt, giving any residual value to shareholders.

Specifically, at t = 0, the firm issues fairly priced debt. Both the firm and its lender are

risk neutral and have a discount rate of zero. The firm chooses the date-two repayment X

that it will owe to the lender at t = 2. At t = 0, the lender gives the firm the expected value

of the firm’s future repayment, which takes into account the possiblity of a restructuring at
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t = 1 or default at t = 2. In this sense, debt is issued at a competitively priced discount to

face value, determined by rational expectations. We provide details below.

At t = 1, there is the potential for a restructuring. We let 1R denote an indicator equal to

one if a restructuring offer is accepted. If the restructuring is accepted, a fraction ζ of lenders

exchange each dollar of their old debt for ϵ dollars of new senior debt, where ζ ∈ [0.5, 1] and

ϵ ∈ [0, 1] are exogenous parameters. In other words, if a restructuring is accepted, the total

debt owed at t = 2 is reduced from X to X
(
1− ζ(1− ϵ)

)
. We define

X̃ = X
[
1− 1Rζ(1− ϵ)

]
(B.1)

as the debt owed at t = 2, taking into account the possibility of a restructuring at t = 1.

Additionally, at t = 1, the firm and lender learn whether the firm’s operations are healthy.

With probability 1−λ, the firm and the lender observe that the firm’s operations are healthy.

In this case, everyone knows the firm’s value is certain to equal 1 + τX̃. We normalize the

unlevered after-tax firm value to one for simplicity. The parameter τ > 0 captures the tax

benefits of debt per dollar of debt. This can be thought of as a reduced-form approach to

modeling both the tax rate and the coupon rate.

With probability λ, the firm experiences a negative shock. In this case, the tax shield is

not realized. The firm value is Z ∼ Uniform(0, 1), where we assume the uniform distribution

for simplicity. Let 1Z denote an indicator for a negative shock at t = 1.

Finally, if the firm experiences a negative shock, it defaults if the firm value Z is less

than the debt owed X̃. In default, the firm is only worth πZ for an exogenous parameter

π < 1 that captures default costs.

Given this, the ex-ante firm value is
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max
X

E
[ (

1− 1Z

)
(1 + τX̃) + 1ZZ

(
1− (1− π)1(Z < X̃)

)]
. (B.2)

Because debt is fairly priced and equity holders receive the debt proceeds at issuance,

equity holders simply choose X at t = 0 to maximize (B.2).

The following proposition characterizes the impact of restructurings on ex-ante firm value.

Proposition 1. Suppose that a restructuring occurs with probability α after a negative shock

(1Z = 1) and with probability zero for healthy firms (1Z = 0). Then ex-ante firm value (B.2)

increases with the probability of restructuring α.

Proposition 2. Suppose that a restructuring occurs with probability zero after a negative

shock (1Z = 1) and with probability α for healthy firms (1Z = 0). Then ex-ante firm value

(B.2) decreases with the probability of restructuring α.

Intuitively, equity holders would like to realize the tax benefits of debt without risking

the deadweight loss of default. Ideally, equity holders would issue a state-contingent debt

contract that is cancelled in bad states of the world before default. In practice, many frictions

make such a security infeasible (e.g., difficulty in verifying bad states, moral hazard, etc).

However, restructurings introduce state-contingent repayment. If restructurings occur in the

states where the tax-shield is valuable, this destroys value. If restructurings occur in states

where default is likely, they create value ex-ante.

B.1 Secured and unsecured debt

The above results show that if restructurings are accepted in relatively good states of the

world, they will harm firms ex-ante. If restructurings are only accepted in bad states of the

world, they will benefit firms ex-ante.
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When deciding whether to accept a restructuring, lenders trade off a lower face value

with higher seniority. Higher seniority is particularly beneficial if seniority is lower to start

with. For this reason, a restructuring offer aimed at unsecured creditors is more likely

to succeed than a restructuring offer aimed at secured creditors. In other words, secured

lenders are likely to only accept when the firm is very likely to default (bad states), while

unsecured lenders are likely to accept when default is less likely (better states). Because of

the legal constraints discussed in the previous section, this new form of liability-management

transaction targets secured lenders. We thus expect these transactions to only be accepted

by secured lenders in bad states of the world where default is close. Because of this, the

above results suggest restructurings will improve ex-ante firm value. We now show this in

our realistic dynamic model.

B.2 Proofs for Illustrative Model

Recall Proposition 1 states the following:

Proposition 1: Suppose that a restructuring occurs with probability α after a negative

shock (1Z = 1) and with probability zero for healthy firms (1Z = 0). Then ex-ante firm value

(B.2) increases with the probability of restructuring α.

Proof: Under the stated assumption, for any fixed X, firm value is

(1− λ)(1 + τX) + λ(1− α)
( ∫ 1

X

ZdZ +

∫ X

0

πZdZ
)
+λα

( ∫ 1

X̂

ZdZ +

∫ X̂

0

πZdZ
)
,

(B.3)

where X̂ ≡ X(1− ζ(1− ϵ)). Evaluating integrals, this is
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(1− λ)(1 + τX) + λ(1− α)
( 1−X2

2
+
πX2

2

)
+λα

( 1− X̂2

2
+
πX̂2

2

)
. (B.4)

Rearranging,

(1− λ)(1 + τX) + λ
( 1− (1− π)X2

2

)
+λα(1− π)

( X2 − X̂2

2

)
. (B.5)

The last term is positive, so increasing α increases firm value for any chosen X, so firm

value increases with α.

Recall Proposition 2 states the following:

Proposition 2: Suppose that a restructuring occurs with probability zero after a negative

shock (1Z = 1) and with probability α for healthy firms (1Z = 0). Then ex-ante firm value

(B.2) decreases with the probability of restructuring α.

Proof: Under the stated assumption, for any fixed X, we can apply the same steps to

show that firm value is

(1− λ)(1 + τX)− (1− λ)ατ(X − X̂) + λ
( 1− (1− π)X2

2

)
. (B.6)

The second term is negative, so increasing α lowers firm value for any chosen X, so firm

value decreases with α.
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